Knowing Where via Geo-Referencing through Google's S2-Cell System

Zhangyu Wang University of California Santa Barbara

KnowWhereGraph (KWG) is a knowledge base composed of triples.

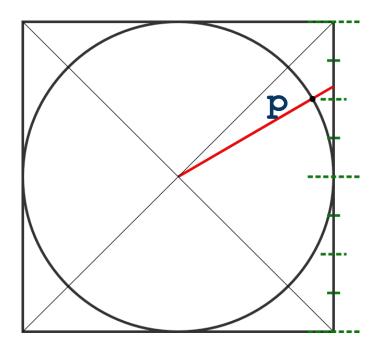
- → A triple is a fact expressed as (s, r, t), where s is the source, r is the relation, and t is the target.
 For example, "Hurricane Katrina hits Florida" can be triplified as (Hurricane, influences, Florida).
- → Geospatial relations are just a special kind of relations.
- → To relate entities in the graph with geospatial concepts is called geo-referencing.
- → Useful to answer questions like "Where did X happen?"

How to do geo-referencing in KWG?

There are multiple natural ways of geo-referencing:

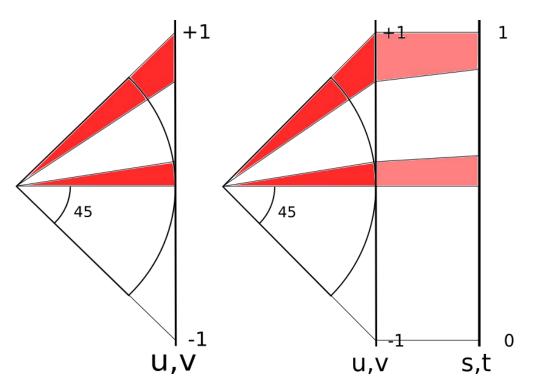
- → Raw coordinates
- → Administrative hierarchy
- → Grid system

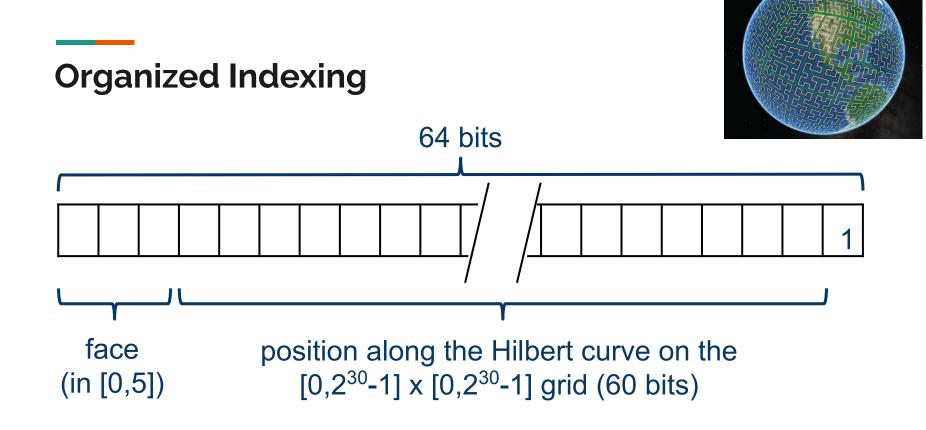
Major concerns:


- → Appropriate granularity
- → Uniform and coherent indexing

Google's S2-Cell System fits our needs well

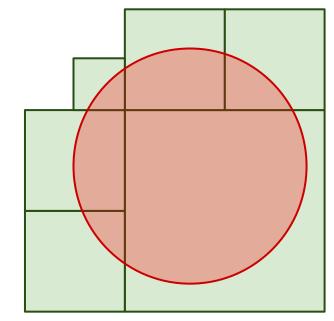
- → Hierarchical decomposition of the sphere into cells
- → Uniform areas of cells easy to approximate region sizes based on cell amount
- → Indexing well organized 64-bit index, inclusion/bordering relations can be directly referred from the cell indices without computation
- → Multiple granularity: from level 0 (dividing the entire sphere into 6 surfaces) to level 30 (around 1 cm²). It also provides APIs for computing the smallest set of covering cells.


Hierarchical Decomposition

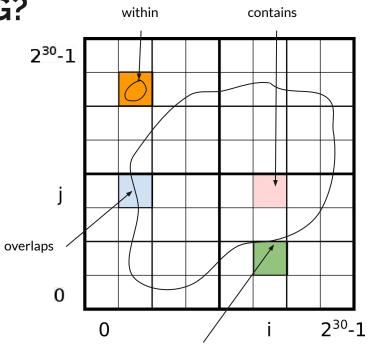

- \rightarrow Enclose sphere in cube
- → $[-1,1] \times [-1,1] \times [-1,1]$
- \rightarrow Project p on the cube
- → Build a quad-tree on each cube face
- → Find quad-tree cell that contains the projection of p

Uniform Area

 → Non-linear (quadratic) transformation: more accurate than linear, and computationally efficient.

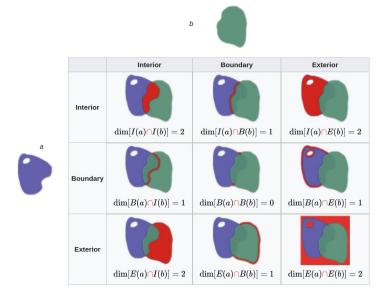

https://s2geometry.io/devguide/s2cell hierarchy.html

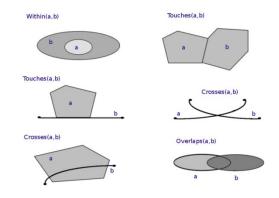
Organized Indexing


Computing set of covering cells

- \rightarrow Given a polygon (e.g., red region to the right).
- → Given a min level and a max level of cells.
- → Compute the smallest set of cells that are between the min/max levels and fully cover the polygon.
- → Notice: there may be multiple sets of possible covering cells that is, the output is not unique. These cells are also not of the same levels.

How do we use S2Cells in KWG?

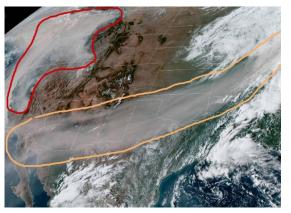

- → Spatial relations: within, contains, touches, overlaps.
- → Spatial join the polygons of the entities in the graph with the S2 cell polygons to get the spatial relations.
- → Conduct spatial joins from level 0 to level 13.
- → Then we obtain a triple like (wild_fire_1, overlaps, s2_0x100000)



touches

DE-9IM

- → Dimensionally Extended 9-Intersection Model
- → Based on a 3×3 intersection matrix with the form:



Example of an overlap relation: $T^{*}T^{***}T^{**}$

Туре	Description
Т	Intersection exists
F	Intersection does not exist
*	Does not matter
0	Intersection is a point (dimension = 0)
1	Intersection is a line(dimension = 1)
2	Intersection is a polygon (dimension = 2)

Difficulties and solutions

Computing spatial relations for large polygons (e.g., smoke plumes that span over thousands of miles) is very time-consuming.

A satellite image shows smoke from the Western wildfires stretching as far east as Michigan. THE NATIONAL WEATHER SERVICE WEATHER PREDICTION CENTER

- → Compute the minimum set of covering cells first, and only do spatial join with the covering cells.
- → within and contains are inverse relations, so we only need to model contains.
- → Hierarchical spatial join: contains relations are transitive. If A contains B, then A also contains all child cells of B.